Standards Worldwide
Standards Worldwide
Phone +49 30 58885700-07

Standard [CURRENT]

SAE AIR 1903A:2021-10-08

Overview and History of Aircraft Inerting Systems

Publication date
2021-10-08
Original language
English
Pages
18

118.80 EUR VAT included

111.03 EUR VAT excluded

Format and language options

PDF download
  • 118.80 EUR

Shipment (3-5 working days)
  • 118.80 EUR

Monitor with the Standards Ticker

This option is only available after login.
Easily subscribe: Save time and money now!

You can also subscribe to this document - together with other important standards in your industry. This makes your work easier and pays for itself after a short time.

Sparschwein_data
Subscription advantages
Sparschwein Vorteil 1_data

Important standards for your industry, regularly updated

Sparschwein Vorteil 2_data

Much cheaper than buying individually

Sparschwein Vorteil 3_data

Useful functions: Filters, version comparison and more

Publication date
2021-10-08
Original language
English
Pages
18

Quick delivery via download or delivery service

Buy securely with a credit card or pay upon receipt of invoice

All transactions are encrypted

Short description
An airplane fuel tank inerting system provides an inert atmosphere in a fuel tank to minimize explosive ignition of fuel vapor. This SAE Aerospace Information Report (AIR) deals with the three methods of fuel tank inerting systems currently used in operational aircraft: (1) on-board inert gas generation systems (OBIGGS), (2) liquid/gaseous nitrogen systems, and (3) halon systems. The OBIGGS and nitrogen systems generally are designed to provide full-time fuel tank fire protection; the halon systems generally are designed to provide only on-demand or combat-specific protection. This document also addresses other design considerations that affect fuel tank flammability such as fuel tank pressure and other methods for reducing fuel tank flammability. This AIR does not treat the subject of explosion suppression foam (ESF) that has been used for fuel tank explosion protection on some military aircraft. ESF is also available for retrofit for commercial airplanes. The primary disadvantages of foam are weight, reduction of usable fuel, and the added maintenance complexity when the foam must be removed for tank maintenance or inspection. AIR4170 is an excellent reference for the use of ESF for fuel tank explosion protection. Note that across the military and commercial aviation industry, different terminology has been used regarding fuel tank inerting. In military applications, the system is referred to as on-board inert gas generation system (OBIGGS). Regulatory agencies use the term flammability reduction means (FRM). OEMs in commercial applications use several terms: fuel tank inerting system (FTIS), flammability reduction system (FRS), inert gas system (IGS) and nitrogen generation system (NGS).
Loading recommended items...
Loading recommended items...
Loading recommended items...