Dear Customer

Our Customer Service will be available again as of 2 January 2025

Please note that new registrations and requests to be processed manually will only be processed from this point onwards.

You can of course place orders and receive downloads online at any time.

We wish you happy holidays, a peaceful time and a healthy New Year!

Your DIN Media

Standards Worldwide
Standards Worldwide
Phone +49 30 58885700-07

Standard [CURRENT]

ASTM F 2182:2019

Standard Test Method for Measurement of Radio Frequency Induced Heating On or Near Passive Implants During Magnetic Resonance Imaging

Publication date
2019
Original language
English
Pages
11

from 81.30 EUR VAT included

from 75.98 EUR VAT excluded

Format and language options

PDF download
  • 81.30 EUR

  • 97.60 EUR

Shipment (3-5 working days)
  • 90.40 EUR

Monitor with the Standards Ticker

This option is only available after login.
Easily subscribe: Save time and money now!

You can also subscribe to this document - together with other important standards in your industry. This makes your work easier and pays for itself after a short time.

Sparschwein_data
Subscription advantages
Sparschwein Vorteil 1_data

Important standards for your industry, regularly updated

Sparschwein Vorteil 2_data

Much cheaper than buying individually

Sparschwein Vorteil 3_data

Useful functions: Filters, version comparison and more

Publication date
2019
Original language
English
Pages
11
DOI
https://dx.doi.org/10.1520/F2182-19

Quick delivery via download or delivery service

Buy securely with a credit card or pay upon receipt of invoice

All transactions are encrypted

Short description
1.1 This test method covers measurement of radio frequency (RF)-induced heating on or near a passive medical implant within a phantom during magnetic resonance imaging (MRI). The test method does not specify levels of heating considered to be safe to the patient and relies on users to define their own acceptance criteria. 1.2 This test method does not address other possible safety issues which include but are not limited to issues of magnetically induced-displacement, magnetically-induced torque, image artifact, acoustic noise, tissue heating, interaction among devices, and the functionality of the device and the MR system. 1.3 The amount of RF-induced temperature rise (ΔT ) for a given incident electric field will depend on the RF frequency, which is dependent on the static magnetic field strength of the MR system. While the focus in this test method is on 1.5 tesla (T) or 3 T MR systems, the ΔT for an implant in MR systems of other static magnetic field strengths or magnet designs can be evaluated by suitable modification of the method described herein. 1.4 This test method assumes that testing is done on devices that will be entirely inside the body. Testing for devices with other implantation conditions (for example, external fixation devices, percutaneous needles, catheters or tethered devices such as ablation probes) is beyond the scope of this standard; for such devices, modifications of this test method may be necessary. Note 1: RF-heating induced by any electrically conductive implanted device may be impacted by the presence of other metallic or otherwise electrically conductive devices present nearby. 1.5 This test method is written for several possible RF exposure systems, including Volume RF transmit coils. The exposure system needs to be properly characterized, within the stated uncertainties, in term of local background RF exposure for the implants which are tested. 1.6 The values stated in SI units are to be regarded as standard. 1.7 A device with deployed dimensions of less than 2 cm in all directions does not need to be tested with respect to RF-induced heating, as it is expected to generate Δ;T of less than 2°C over 1 hour of exposure at 1.5 T and 3 T frequencies ( 1 , 2 2 and ANSI/AAMI/ISO 14708-3:2017). This condition is not valid when multiple replicas of the device (for example, multiple anchors) are implanted within 3 cm of the device. Note 2: The above values were derived from existing data and literature. The 3 cm distance is recommended to avoid any RF coupling with other neighboring devices. 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
ICS
11.040.40
DOI
https://dx.doi.org/10.1520/F2182-19
Also available in
Loading recommended items...
Loading recommended items...
Loading recommended items...
Loading recommended items...