Dear Customer

Our Customer Service will be available again as of 2 January 2025

Please note that new registrations and requests to be processed manually will only be processed from this point onwards.

You can of course place orders and receive downloads online at any time.

We wish you happy holidays, a peaceful time and a healthy New Year!

Your DIN Media

Standards Worldwide
Standards Worldwide
Phone +49 30 58885700-07

Standard [CURRENT]

SAE AIR 1168/11A:2011-07-25

Spacecraft Boost and Entry Heat Transfer

Publication date
2011-07-25
Original language
English
Pages
290

188.30 EUR VAT included

175.98 EUR VAT excluded

Format and language options

PDF download
  • 188.30 EUR

Shipment (3-5 working days)
  • 188.30 EUR

Monitor with the Standards Ticker

This option is only available after login.
Easily subscribe: Save time and money now!

You can also subscribe to this document - together with other important standards in your industry. This makes your work easier and pays for itself after a short time.

Sparschwein_data
Subscription advantages
Sparschwein Vorteil 1_data

Important standards for your industry, regularly updated

Sparschwein Vorteil 2_data

Much cheaper than buying individually

Sparschwein Vorteil 3_data

Useful functions: Filters, version comparison and more

Publication date
2011-07-25
Original language
English
Pages
290

Quick delivery via download or delivery service

Buy securely with a credit card or pay upon receipt of invoice

All transactions are encrypted

Short description
The prediction of vehicle temperatures during ascent through the earth's atmosphere requires an accurate knowledge of the aerodynamic heating rates occurring at the vehicle surface. Flight parameters required in heating calculations include the local airstream velocity, pressure, and temperature at the boundary layer edge for the vehicle location in question. In addition, thermodynamic and transport air properties are required at these conditions. Both laminar and turbulent boundary layers occur during the boost trajectory. Experience has shown that laminar and turbulent heating are of equivalent importance. Laminar heating predominates in importance in the stagnation areas, but the large afterbody surfaces are most strongly affected by turbulent heating. Once the local flow conditions and corresponding air properties have been obtained, the convective heating rate may be calculated for a particular wall temperature. This assumes that the boundary layer flow regime (that is, turbulent, laminar, or transitory) has also been established, so that a heating theory corresponding to the particular flow conditions may be selected. This section presents theoretical methods for computing boost vehicle surface aerodynamic heating rates. First, procedures are given for computing the local flow distributions around the vehicle. Second, methods are given for computing the convective heating rates, using the flow parameters found previously.
Loading recommended items...
Loading recommended items...
Loading recommended items...