Standards Worldwide
Standards Worldwide
Phone +49 30 58885700-07

Standard [CURRENT]

ASTM E 668:2020

Standard Practice for Application of Thermoluminescence-Dosimetry (TLD) Systems for Determining Absorbed Dose in Radiation-Hardness Testing of Electronic Devices

German title
Anwendung von TLD zur Bestimmung der absorbierten Dosis bei der Prüfung von Strahlungsempfindlichkeit elektronischer Bauelemente
Publication date
2020
Original language
English
Pages
19

from 73.80 EUR VAT included

from 68.97 EUR VAT excluded

Format and language options

PDF download
  • 73.80 EUR

  • 88.60 EUR

Shipment (3-5 working days)
  • 82.10 EUR

Monitor with the Standards Ticker

This option is only available after login.
Easily subscribe: Save time and money now!

You can also subscribe to this document - together with other important standards in your industry. This makes your work easier and pays for itself after a short time.

Sparschwein_data
Subscription advantages
Sparschwein Vorteil 1_data

Important standards for your industry, regularly updated

Sparschwein Vorteil 2_data

Much cheaper than buying individually

Sparschwein Vorteil 3_data

Useful functions: Filters, version comparison and more

Publication date
2020
Original language
English
Pages
19
DOI
https://dx.doi.org/10.1520/E0668-20

Quick delivery via download or delivery service

Buy securely with a credit card or pay upon receipt of invoice

All transactions are encrypted

Short description
1.1 This practice covers procedures for the use of thermoluminescence dosimeters (TLDs) to determine the absorbed dose in a material irradiated by ionizing radiation. Although some elements of the procedures have broader application, the specific area of concern is radiation-hardness testing of electronic devices. This practice is applicable to the measurement of absorbed dose in materials irradiated by gamma rays, X rays, and electrons of energies from 12 to 60 MeV. Specific energy limits are covered in appropriate sections describing specific applications of the procedures. The range of absorbed dose covered is approximately from 10-2 to 104 Gy (1 to 106 rad), and the range of absorbed dose rates is approximately from 10-2 to 1010 Gy/s (1 to 1012 rad/s). Absorbed dose and absorbed dose-rate measurements in materials subjected to neutron irradiation are not covered in this practice. (See Practice E2450 for guidance in mixed fields.) Further, the portion of these procedures that deal with electron irradiation are primarily intended for use in parts testing. Testing of devices as a part of more massive components such as electronics boards or boxes may require techniques outside the scope of this practice. Note 1: The purpose of the upper and lower limits on the energy for electron irradiation is to approach a limiting case where dosimetry is simplified. Specifically, the dosimetry methodology specified requires that the following three limiting conditions be approached: ( a ) energy loss of the primary electrons is small, ( b ) secondary electrons are largely stopped within the dosimeter, and ( c ) bremsstrahlung radiation generated by the primary electrons is largely lost. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
ICS
31.020
DOI
https://dx.doi.org/10.1520/E0668-20
Loading recommended items...
Loading recommended items...
Loading recommended items...
Loading recommended items...