Standards Worldwide
Standards Worldwide
Phone +49 30 58885700-07

Standard [CURRENT]

ASTM E 606/E 606M:2021

Standard Test Method for Strain-Controlled Fatigue Testing

Publication date
2021
Original language
English
Pages
16

from 81.30 EUR VAT included

from 75.98 EUR VAT excluded

Format and language options

PDF download
  • 81.30 EUR

  • 97.60 EUR

Shipment (3-5 working days)
  • 90.40 EUR

Monitor with the Standards Ticker

This option is only available after login.
Easily subscribe: Save time and money now!

You can also subscribe to this document - together with other important standards in your industry. This makes your work easier and pays for itself after a short time.

Sparschwein_data
Subscription advantages
Sparschwein Vorteil 1_data

Important standards for your industry, regularly updated

Sparschwein Vorteil 2_data

Much cheaper than buying individually

Sparschwein Vorteil 3_data

Useful functions: Filters, version comparison and more

Publication date
2021
Original language
English
Pages
16
DOI
https://dx.doi.org/10.1520/E0606_E0606M-21

Quick delivery via download or delivery service

Buy securely with a credit card or pay upon receipt of invoice

All transactions are encrypted

Short description
1.1 This test method covers the determination of fatigue properties of nominally homogeneous materials by the use of test specimens subjected to uniaxial forces. It is intended as a guide for fatigue testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. While this test method is intended primarily for strain-controlled fatigue testing, some sections may provide useful information for force-controlled or stress-controlled testing. 1.2 The use of this test method is limited to specimens and does not cover testing of full-scale components, structures, or consumer products. 1.3 This test method is applicable to temperatures and strain rates for which the magnitudes of time-dependent inelastic strains are on the same order or less than the magnitudes of time-independent inelastic strains. No restrictions are placed on environmental factors such as temperature, pressure, humidity, medium, and others, provided they are controlled throughout the test, do not cause loss of or change in dimension with time, and are detailed in the data report. Note 1: The term inelastic is used herein to refer to all nonelastic strains. The term plastic is used herein to refer only to the time-independent (that is, noncreep) component of inelastic strain. To truly determine a time-independent strain the force would have to be applied instantaneously, which is not possible. A useful engineering estimate of time-independent strain can be obtained when the strain rate exceeds some value. For example, a strain rate of 1 × 10−3 sec−1 is often used for this purpose. This value should increase with increasing test temperature. 1.4 This test method is restricted to the testing of uniform gage section test specimens subjected to axial forces as shown in Fig. 1 (a). Testing is limited to strain-controlled cycling. The test method may be applied to hourglass specimens, see Fig. 1 (b), but the user is cautioned about uncertainties in data analysis and interpretation. Testing is done primarily under constant amplitude cycling and may contain interspersed hold times at repeated intervals. The test method may be adapted to guide testing for more general cases where strain or temperature may vary according to application specific histories. Data analysis may not follow this test method in such cases. FIG. 1 Recommended Low-Cycle Fatigue Specimens Note 1: * Dimension d is recommended to be 6.35 mm [0.25 in.]. See 7.1 . Centers permissible. ** This diameter may be made greater or less than 2d depending on material hardness. In typically ductile materials diameters less than 2d are often employed and in typically brittle materials diameters greater than 2d may be found desirable. Note 2: Threaded connections are more prone to inferior axial alignment and have greater potential for backlash, particularly if the connection with the grip is not properly designed. 1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
ICS
77.040.10
DOI
https://dx.doi.org/10.1520/E0606_E0606M-21
Loading recommended items...
Loading recommended items...
Loading recommended items...
Loading recommended items...