Standards Worldwide
Standards Worldwide
Phone +49 30 58885700-07

Standard [CURRENT]

ASTM D 6938:2023

Standard Test Methods for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)

Publication date
2023
Original language
English
Pages
11

from 81.30 EUR VAT included

from 75.98 EUR VAT excluded

Format and language options

PDF download
  • 81.30 EUR

  • 97.60 EUR

Shipment (3-5 working days)
  • 90.40 EUR

Monitor with the Standards Ticker

This option is only available after login.
Easily subscribe: Save time and money now!

You can also subscribe to this document - together with other important standards in your industry. This makes your work easier and pays for itself after a short time.

Sparschwein_data
Subscription advantages
Sparschwein Vorteil 1_data

Important standards for your industry, regularly updated

Sparschwein Vorteil 2_data

Much cheaper than buying individually

Sparschwein Vorteil 3_data

Useful functions: Filters, version comparison and more

Publication date
2023
Original language
English
Pages
11
DOI
https://dx.doi.org/10.1520/D6938-23

Quick delivery via download or delivery service

Buy securely with a credit card or pay upon receipt of invoice

All transactions are encrypted

Short description
1.1 This test method describes the procedures for measuring in-place density and moisture of soil and soil-aggregate by use of nuclear equipment (hereafter referred to as gauge). The density of the material may be measured by direct transmission, backscatter, or backscatter/air-gap ratio methods. Measurements for water (moisture) content are taken at the surface in backscatter mode regardless of the mode being used for density. 1.1.1 For limitations see Section 5 on Interferences. 1.2 The total or wet density of soil and soil-aggregate is measured by the attenuation of gamma radiation where, in direct transmission, the source is placed at a known depth up to 300 mm (12 in.) and the detector(s) remains on the surface (some gauges may reverse this orientation); or in backscatter or backscatter/air-gap the source and detector(s) both remain on the surface. 1.2.1 The density of the test sample in mass per unit volume is calculated by comparing the detected rate of gamma radiation with previously established calibration data. 1.2.2 The dry density of the test sample is obtained by subtracting the water mass per unit volume from the test sample wet density (Section 11 ). Most gauges display this value directly. 1.3 The gauge is calibrated to read the water mass per unit volume of soil or soil-aggregate. When divided by the density of water and then multiplied by 100, the water mass per unit volume is equivalent to the volumetric water content. The water mass per unit volume is determined by the thermalizing or slowing of fast neutrons by hydrogen, a component of water. The neutron source and the thermal neutron detector are both located at the surface of the material being tested. The water content most prevalent in engineering and construction activities is known as the gravimetric water content, w, and is the ratio of the mass of the water in pore spaces to the total mass of solids, expressed as a percentage. 1.4 Two alternative procedures are provided. 1.4.1 Procedure A describes the direct transmission method in which the probe extends through the base of the gauge into a pre-formed hole to a desired depth. The direct transmission is the preferred method. 1.4.2 Procedure B involves the use of a dedicated backscatter gauge or the probe in the backscatter position. This places the gamma and neutron sources and the detectors in the same plane. 1.4.3 Mark the test area to allow the placement of the gauge over the test site and to align the probe to the hole. 1.5 Units The values stated in SI units are to be regarded as standard. The values given in parentheses are provided for information only and are not considered standard. Reporting the test results in units other than SI shall not be regarded as nonconformance with this standard. 1.6 All observed and calculated values shall conform to the guide for significant digits and rounding established in Practice D6026 . 1.6.1 The procedures used to specify how data are collected, recorded, and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the users objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design. 1.7 Limitations This test method is not applicable to clean gravel or clean crushed rock due to excessive surface voids which have the potential to affect gauge measurements. 1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
ICS
13.080.20
DOI
https://dx.doi.org/10.1520/D6938-23
Loading recommended items...
Loading recommended items...
Loading recommended items...
Loading recommended items...